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The role of nitric oxide (NO) in tumorigenesis is mul- 
tifactorial. NO can participate in the complicated pro- 
cess of carcinogenesis by mediating DNA damage in 
early phases of tumorigenesis, as well as support tu- 
mor progression through the induction of angiogenesis 
and suppression of the immune response. This paper 
addresses the effects of NO on transcriptional regu- 
lation following DNA damage and cyclooxygenase 
expression in the multistep process of tumorigenesis. 
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INTRODUCTION 

A small  chemically simple and highly toxic gas, 
nitric oxide (NO) seems an unlikely biological 
jack-of-all-trades, as most of the body's functions 
are indeed regulated by extraordinarily large and 
complex proteins and compounds. NO exists in 
the gaseous state under normal atmospheric 
conditions. Over the past decade, it has been re- 
alized that this diatomic radical plays a variety 
of regulatory functions in vivo. m Interest in the 

importance of NO in medicine and biology 
escalated after the first paper on this topic, pub- 
lished in 1985 by Stuehr and Marietta, demon- 
strated NO synthesis by a mammalian cell. [2J 
Unsurprisingly, NO was named "Molecule of the 
Year" in 1992 in recognition of the tremendous 
significance of its role in biological systems, t31 

Nearly every cell type studied thus far has the 
capacity to synthesize NO by one of three distinct 
nitric oxide synthase (NOS) isoforms. Ill The ef- 
fects brought forth by NO can vary greatly, de- 
pending on the site where NO is synthesized, the 
amount of NO formed, and the targets within the 
local environment. Beneficial responses, such as 
vasodilatation, inhibition of platelet aggregation, 
relaxation of smooth muscles and signal transmis- 
sion in neuronal cells are induced by the produc- 
tion of small quantities of NO by constitutive 
NOS, namely endothelial and neuronal isoforms. 
These constitutive isoforms, which are expressed 
continuously, generate NO in conditions where 
intraceUular Ca 2+ level is increased and cal- 
modulin is activated. [11 In contrast, the action of 
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inducible NOS is independent of intracellular 
Ca 2+ level and leads to the synthesis of high local 
concentrations of NO for prolonged periods of 
time. This isoform of NOS produces much larger 
quantities of NO in response to cytokines and 
endotoxins, which have been shown to be cyto- 
static or cytotoxic to tumor cells and a range of 
microorganisms. [4] The effects of NO are not all 
beneficial, as this free radical has also been iden- 
tiffed as a deleterious agent in numerous patho- 
physiological conditions, including cancer. The 
anti-tumor properties of NO are highlighted by 
some authors, while others implicate NO in tu- 
mor promotion. 

The objective of this review is to discuss these 
seemingly contradictory roles of NO in early and 
late stages of human carcinogenesis. 

BIOCHEMICAL INTERACTIONS OF NO 

The redox properties of NO influence its reac- 
tivity. The redox relationship of NO with other 
nitrogen oxides indicates that NO occupies a cen- 
tral and unique position in the redox scheme: IsJ 

N(+5)O3 *2e- ._. N(+a)O2 ÷1"- ... N(+2)o+le- 

NH(+I)O +2e- ._. N(q)H2OH +2e- 

+-~ N(-3)H3 

Being a free radical, NO is capable of reacting 
with other free radicals. In basic conditions, NO 
is capable of oxidizing sulfhydryl groups, react- 
ing with amines in organic solvents, E61 and with 
metal-containing proteins. I7"81 It is crucial to un- 
derstand the NO chemistry, before one can fully 
grasp its physiological functions as well as its 
toxicity. The role of NO as a physiological mes- 
senger molecule and as a cytotoxic effector mol- 
ecule under appropriate conditions is dependent 
on its chemical properties as well as concen- 
tration. Reactive nitrogen oxide species (RNOS) 
are produced by the reaction of NO with either 
molecular oxygen, one of the most common yet 

biologically reactive molecules, or with super- 
oxide. Numerous biological molecules have 
been proven to be oxidized by RNOS, I91 there- 
fore possibly accounting for certain types of 
NO-mediated toxicity. 

The reactivity of NO is one of the primary de- 
terminants of its final effect on a given biological 
system. NO acts both directly and indirectly, tl°l 
NO acts directly by reacting chemically with a 
specific biological target, mostly in conditions 
where constitutive NOS isoforms generate low 
levels of NO. t1°1 Thus, low levels of NO can react 
directly with certain heine-containing proteins 
such as guanylate cyclase, oxyhemoglobin, and 
cytochrome P450. tll On the other hand, the re- 
active nitrogen oxide species mediate certain 
chemical reactions, where the local concentration 
of NO, produced by iNOS alone, is high. These 
constitute the indirect effects of NO. These chem- 
ical reactions bring about nitrosative and oxida- 
tive stresses in biological systems, both of which 
yield different types of DNA mutations, mJ 

Nitrosamines generated in biological systems 
during nitrosative stress are potentially carcino- 
genic. It has been shown that these carcinogenic 
nitrosamines can be generated in the acidic con- 
ditions of the stomach. I12-17] Although NO itself 
does not directly interact with DNA or proteins, 
high concentrations of NO generated during in- 
flammation as a response to any pathogen, can 
lead to the formation of RNOS, such as N203. [lsl 
During inflammation, stimulated macrophages 
and neutrophils express iNOS and generate large 
amounts of NO. This promotes the formation of 
RNOS, which can then nitrosate amines. |~9~°1 
Hence such nitrosation reactions appear to occur 
in vivo. Nitrosamines, formed under such condi- 
tions of chronic inflammation, can in turn lead 
to cancer, t21'221 Cells exposed to NO exhibit lesions 
consistent with the chemistry of deamination. 
This involves the conversion of cytosine to uracil, 
guanine to xanthine, methylcytosine to thy- 
mine, and adenine to hypoxanthine. I23'24] Single- 
stranded DNA appears to be far more susceptible 
to nitrosation than double-stranded DNA, I2s] 
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suggesting that deamination occurs mainly dur- 
ing the replication and transcription of DNA. 
Such mechanisms involving the nitrosation of 
nucleic acids may contribute to in vivo sponta- 
neous deamination. 

Oxidative stress induced by RNOS is thought 
to be mediated primarily by the formation of per- 
oxynitrite, 111~°~6] since this can induce DNA 
strand breaks in vitro. [271 

NO and RNOS may also act indirectly by af- 
fecting the enzymatic activity of several DNA 
repair proteins. RNOS have a high affinity for 
amino acids containing thiol residues in DNA 
repair proteins and they can induce nitrosation 
in their active sites. [28-20] Another important reac- 
tion is the inhibition of DNA-binding proteins 
containing zinc finger motifs [31] in the presence of 
NO under aerobic conditions. This occurs per- 
haps through the nitrosation of thiols by N203, 
subsequent ejection of zinc, and the consequent 
degradation of the structural integrity of the 
protein. [321 

Exposure of ceils to NO results in an increased 
number Of single-strand DNA breaks. E24~ It has 
been shown that the effects of exposure to NO 
or RNOS include the inhibition of DNA ligase 
activity, leading to an accumulation of DNA 
breaks that occur either during transcription or 
repair. This increase in DNA breaks caused by 
the NO-mediated inhibition of ligase could in 
turn activate the tumor suppressor gene, p53. [33] 

ROLE OF NO IN THE PROCESS 
OF CARCINOGENESIS 

The etiology of cancer involves many factors, 
with the earliest oncogenic alterations occurring 
possibly decades before transformation. Tumors 
are formed in a process that consists of several 
stages: initiation, promotion, and progression. 
Via both its direct and indirect paths of action, 
NO is implicated in tumor promotion as well 
as tumor suppression. Evidently, NO plays a 

complex and sometimes contradictory role in car- 
cinogenesis. The association between increased 
NOS expression and tumor progression as well 
as metastasis is proposed by some studies, I34-41j 
while others draw a link between tumor invasi- 
veness and aggressiveness and decreased NOS 
activity. [42] 

The involvement of NO in tumor biology has 
been a topic of much study in recent years. Inter- 
actions between the endothelial cells of tumor 
vasculature, tumor-infiltrating immune cells such 
as T lymphocytes and macrophages, and the tu- 
mor cells themselves play a regulatory role in 
tumor growth. The production of NO by most 
of these cellular components has been demon- 
strated.[ 43-46] 

The role of NO in cancer is two-faceted: when 
produced at high concentrations, it has cytotoxic 
and cytostatic properties, resulting in DNA 
damage, the initial step in carcinogenesis. Tu- 
mor growth is enhanced via NO's anti-apoptotic 
effects and its role in the creation of neovascu- 
lature, under conditions of low to moderate NO 
concentration. [471 

INITIATION PHASE OF 
TUMORIGENESIS 

The stage in tumor growth, the location of NO 
production and the concentration of NO deter- 
mine the effects of NO in tumor biology. Tumor 
growth is a multistep process including the ini- 
tiation phase and the enlargement of an estab- 
lished tumor. Accumulation of mutations occurs 
in tissues exposed to prolong high NO concen- 
tration, as a result of NO itself, or through the 
facilitation of other genotoxic agents, for instance 
during episodes of chronic inflammation or 
through exposure to mutagens in the environ- 
ment. Inhibition of D N A  synthesis via the inhi- 
bition of ribonucleotide reductase activity [48--e°1 
and inhibition of mitochondrial respiration by 
reacting with iron-sulphur proteins such as ac- 
onitase [sl-54J are a few examples of the numerous 
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mechanisms of NO cytostasis. By the formation 
of peroxynitrite, carcinogenic nitrosamines and 
the inhibition of systems required for the re- 
pairing of DNA damage, NO may aggravate 
DNA damage. I28'29"32"ss-581 Exposure of cells to 

NO results in an increased number of single- 
strand DNA breaks. I24j Furthermore, NO or 
RNOS induced DNA damage, activates the tu- 
mor suppressor gene, p53.I331 

In the initiation phase of tumorigenesis, initial 
DNA damage causes the accumulation of the 
tumor suppressor gene, p53. I331 This acts as a 
checkpoint control in the cell cycle, permitting the 
repair of damaged DNA. Isgl As p53 activation 
causes a block in G1/S transition in the cell cycle, 
apoptosis results in the case of severe DNA 
damage. I6°'611 p53 thus plays an active role in 
the cellular response to endogenously produced 
DNA damage due to NO and RNOS. 

It can be seen that NO-induced DNA damage 
results in wild-type p53 accumulation. Further- 
more, it has been reported that increased ex- 
pression of wild-type p53 downregulates iNOS 
expression via a negative feedback loop that 
results in the reduced production of NO. I591 In 
addition, prolonged transcription of wild-type 
p53 may cause methylation of p53 tumor sup- 
pressor gene, which favors G : C ~ A : T transi- 
tions in this gene due to N O .  [21"23'24I It has been 
shown that G : C --* A : T transition is one of the 
most common mutations in the p53 tumor sup- 
pressor gene in early phases of human carcino- 
genesis. [62] AS a result of this process, the mutated 
p53 gene cannot protect cells and tissues from 
mutation in the event of severe DNA damage. 
Therefore, cells and tissues are allowed to multi- 
ply in the event of severe DNA damage since the 
mutated p53 gene loses its principal function in 
cell cycle control. 

As the actions of NO and the p53 tumor sup- 
pressor gene in cell cycle control are inhibited, 
a functional derangement of the cell cycle and 
uncontrolled cellular proliferation ultimately re- 
suit, thus contributing to the initial stage of 
tumorigenesis. 

T U M O R - P R O M O T I N G  P R O P E R T I E S  

OF NO IN ADVANCED TUMORS 

When the tumor cells have reached a certain 
number, hypoxia occurs in the enlarging tumor 
and the creation of neovasculature becomes 
necessary for further tumor growth and survival. 
Wild-type p53 is a known inhibitor of tumor 
angiogenesis, t63j but the presence of hypoxia, 
arising from enlargement of the tumor, has been 
described as a selecting factor for mutant  p53. 
Mutational inactivation of p53 generates a cell 
population that can tolerate the genotoxicity 
and cytostasis of sustained NO production, t641 
Furthermore, low to moderate NO concentrations 
may even have anti-apoptotic properties in these 
cells. Therefore, the loss of p53 function in p53- 
mutated cells would permit both the growth of 
tumor cells as well as the release of angiogenic 
factors such as vascular endothelial growth fac- 
tor in the presence of moderate NO concentra- 
tions, t6sl At this stage, the production of iNOS, 
induced by hypoxia, stimulates the production of 
NO by tumor cells. I661 In this respect, NO produc- 
tion may be a part of the angiogenic switch in 
developing tumors, without which a lack of vas- 
cularization would result, hence limiting the size 
of the developing tumors (Figure 1). Thus, hy- 
poxia and cytokines (e.g. tumor necrosis factor) 
produced by tumor cells induce iNOS expres- 
sion in these cells. Subsequent production of 
NO then promotes tumor growth by stimulating 
angiogenesis, I47"67"681 increasing 7¢ascular perme- 
ability I69-72j and suppressing the immune re- 
sponse. I73'741 The suppression of leukocyte 
proliferation and infiltration is another systemic 
effect of NO of relevance in cancer biology. 
Several reports have indicated that NO produced 
by tumor cells may prevent the infiltration of 
leukocytes I73J and leukocyte adhesion. I6sl Thus, 
NO, in addition to increasing the vascular per- 
meability, downregulates the expression of some 
adhesion molecules, which arelmportant  for in- 
flammatory and immune cell adhesion to vascu- 
lar endothelium. [691 
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FIGURE 1 The involvement of molecular parameters in initial and late stages of carcinogenesis. 

675 

Another mechanism by which NO may pro- 
mote tumor growth is by modulating the produc- 
tion of prostaglandins.I751 NO activates COX-2, I761 
which in turn, stimulates the production of 
proangiogenic factors and prostaglandins. Pro- 
staglandins increase vascular permeability sup- 
porting the development of neovasculature in 

tumors. I77"781 It has also been shown that the 
overexpression of COX-2 alters cell adhesion 
and protects cells against apoptosis by increasing 
the Bcl-2 protein production. [79~°l All these effects 
of NO and prostaglandins generated by COX-2 
facilitate further tumor growth. 
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SUMMARY 

Normal tissue homeostasis is maintained through 
the regulation of cell proliferation and apoptosis. 
It has been shown that in normal cells, wild-type 
p53 suppress both basal and cytokine-induced 
iNOS via a negative "feedback loop", tsg] However, 
in tumor cells which express mutant p53, iNOS 
expression would be unchecked. These cells, 
lacking a functional p53 protein, are prevented 
from being eliminated in the event of severe DNA 
damage, and therefore proliferate more aggres- 
sively. Hypoxia, arising from enlargement in 
tumor size, has been described to be a selective 
factor for mutant  p53 as hypoxia has both geno- 
toxic as well as angiogenic properties. 

The loss of wild-type p53 function or the exp- 
ression of mutant p53 in the tumor cells would 
permit both the growth of tumor cells in the 
presence of moderate NO concentrations as well 
as the release of angiogenic factors such as the 
vascular endothelial growth factor. Besides sup- 
porting the development of neovasculature, in- 
creased iNOS levels in several solid tumors, 
such as human breast, brain, head and neck, and 
colon cancers, I41"65"81"82J may lead to a wild-type 
p53-mediated growth arrest in the epithelial 
ceils dose to the source of NO production. The 
resulting growth inhibition would subsequently 
exert a strong selection pressure, allowing those 
cells that contain mutant  p53 to proliferate faster 
than those containing wild-type p53. [651 It has 
been reported that mutant p53-posifive tumors 
are associated with poor prognosis and resistance 
to chemotherapy. I83-86j Furthermore, clonal selec- 
tion and growth of these mutant  p53-containing 
cells are further supported by the combination 
of prostaglandins and NO-induced angiogenesis, 
increased vascular permeability, immune sup- 
pression and reduced apoptosis (Figure 1). 

It has been proposed that tumor-associated 
NO production, as well as cyclooxygenase-2 over- 
expression, promotes cancer progression by pro- 
viding a selective growth advantage to tumor 
cells with mutant p53. [65] This is consistent with 

the hypothesis that NO and COX-2 are the cancer- 
promoting factors in human carcinogenesis. 
Therefore, according to this hypothesis, it may 
be possible in the future that the inhibitors of 
iNOS and COX-2 may have a therapeutic effect 
on these human tumors, which could be a 
direction of future research in the area of cancer 
treatment. 
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